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Abstract

Three-charge-particle quantum systems with arbitrary masses are treated by a general formalism based on a co-

ordinate-space integral–differential Faddeev–Hahn-type equation. To solve these equations we expand the wave

function components in terms of bound states in initial and final channels and project these equations on these bound

states as in the close-coupling method used in Schr€oodinger equation. After a proper angular momentum projection, a

set of coupled integral–differential equations for the unknown expansion coefficients result, which are solved numeri-

cally by discretization for the calculation of both bound state and rearrangement scattering. In this work the formalism

is employed to study atomic and muonic three-body systems like negative ion of positronium Ps� ¼ ðeþe�e�Þ, positive
ion of hydrogen molecule Hþ

2 , muonic molecules dtl and ddl, and also low-energy charge-transfer reaction for mu-

onium production. Satisfactory results are obtained for all these cases. Comparison with results of other works and

details of the numerical scheme are presented.

� 2003 Elsevier B.V. All rights reserved.
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1. Introduction

The quantum-mechanical few-body problem plays an important role in modern physics by providing an
adequate description of few-particle systems with Coulomb, nuclear and Coulomb and nuclear forces. Its

importance is derived from the fact that there are a wide range of applications in atomic and molecular

physics, plasma physics, nuclear physics and astrophysics that still pose a challenge for theorists, see e.g.

[1–4]. Methods developed in this field are based on detailed few-body equations which provide a correct

description of the quantum few-body dynamics.
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It is common knowledge that except in only a few selected systems the three-body problem cannot be

solved in an explicit way. Thus developing new stable numerical schemes and effective computer algorithms

are still much needed processes in the field. In quantum three-body problems the Faddeev equations [5] are

the most rigorous attempt to provide a basis for numerical calculations. Although the Faddeev technique is

widely used in nuclear physics that is not the case in three-body Coulomb systems.

Recently, a few-body quantum-mechanical descriptions of charge-transfer reactions within modified

Faddeev equations, specifically, Faddeev–Hahn (FH) equations, have been formulated [7]. In this previous

study a close-coupling method was applied, which led to the expansion of the system�s wave function
components into eigenfunctions of the subsystem (target) Hamiltonians providing us with a set of one-

dimensional integral–differential equations after partial-wave projection was applied. It was demonstrated

that the FH-equation approach is an effective tool for description of Coulomb three-body systems. So,

therefore, in the current paper we will apply the method to other few-body problems and will present the

numerical and computing details of the calculations. We show that our numerical scheme allows us to carry

out fairly accurate calculations for various atomic three-body systems at different energies in the framework

of unified computer code.

In this work we carry out calculations for: (1) ground-state energies of a negative ion of positronium
Ps� ¼ ðe�eþe�Þ, where e�=eþ are electron/positron, respectively; a positive ion of hydrogen molecule Hþ

2

and also (2) a spectrum of muonic molecules: dtl� and ddl�, where d and t are hydrogen isotopes

deuteron and triton, respectively, and l� is negative muon, (3) cross-sections of the s-wave elastic

scattering of muonic hydrogen (tl�) on deuteron d, which is one of the most important problems of

muon catalyzed fusion cycle [8,9], and (4) cross-sections of the low energy muonium (Mu) production in

collisions of lþ and hydrogen atoms, where Mu¼ (lþ; e�) represents the bound state of a positive muon

and an electron. Such processes have been of interest in theory, see for example [10,11] and recent

experiments [12].
The next section presents symbolic notations for three-body systems and the integral–differential

equations suitable for numerical calculations. Section 3 includes details of our numerical method and the

implemented algorithm. Section 4 contains tables with results and concluding remarks.

In the electronic case we use e ¼ �h ¼ me ¼ 1, in the muonic case the units are e ¼ �h ¼ ml ¼ 1.
2. Integral–differential equations

Consider a Coulomb three-body system with positive charges 1 and 2, and a negative 3. Let ~rrn be a

coordinate and mn be a mass of the nth particle ðn ¼ 1; 2; 3Þ. Taking the system of units to be

e ¼ �h ¼ m3 ¼ 1, let us introduce Jacobi coordinates

~rrj3 ¼~rr3 �~rrj; ~qqk ¼
~rr3 þ mj~rrj
1þ mj

�~rrk; j 6¼ k ¼ 1; 2: ð1Þ

In this work we consider only Coulomb interactions between the three particles. For any three Coulomb

particles there are at most only two bound subsystems. This suggests a Faddeev formulation which uses

only two components. A general procedure to derive such formulations was given by Hahn and Watson

[13]. In this approach the three-body wave function is represented as follows:

W ¼ W1ð~rr23;~qq1Þ þW2ð~rr13;~qq2Þ; ð2Þ

where each Faddeev-type component is determined by its own Jacobi coordinates. W1ð~rr23;~qq1Þ is quadrat-
ically integrable over the variable~rr23 andW2ð~rr13;~qq2Þ over the variable~rr13. To defineWl (l ¼ 1; 2) a set of two
coupled Faddeev–Hahn-type equations can be written as
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ðE � H0 � V23ð~rr23ÞÞW1ð~rr23;~qq1Þ ¼ ðV23ð~rr23Þ þ V12ð~rr12ÞÞW2ð~rr13;~qq2Þ; ð3Þ
ðE � H0 � V13ð~rr13ÞÞW2ð~rr13;~qq2Þ ¼ ðV13ð~rr13Þ þ V12ð~rr12ÞÞW1ð~rr23;~qq1Þ: ð4Þ

Here, H0 is the kinetic energy operator of the three-particle system, VijðrijÞ are paired Coulomb interaction
potentials ði 6¼ j ¼ 1; 2; 3Þ and E is the total energy.

The constructed equations satisfy the Schr€oodinger equation exactly. For the energies below the three-

body break-up threshold they have the same advantages as the Faddeev equations, because they are for-

mulated for the wave function components with correct physical asymptotes. The Faddeev decomposition

avoids overcompleteness problems because two-body subsystems are treated in an equivalent way and the

correct asymptotics are guaranteed. This approach simplifies the solution procedure and provides the

correct asymptotic behavior of the solution below the three-body break-up threshold.

In the general case a component of the three-body wave function has the asymptotic form which includes
all open channels: elastic/inelastic, transfer and breakup [14]. In this work we shall use an approximation

[15], where each component of the total wave function corresponds just to one definite channel: for the

elastic/inelastic channel

W1ð~rr23;~qq1Þ �
q1!þ1

eik1zu1ð~rr23Þ þ
X1
n

Ael=ex
n ðXq1Þ

eiknq1

q1

unð~rr23Þ ð5Þ

and for the transfer channel

W2ð~rr13;~qq2Þ �
q2!þ1

X1
m

Atr
mðXq2Þ

eik
0
mq2

q2

umð~rr13Þ; ð6Þ

it is easy to see that the asymptotic behaviour of the total wave function becomes similar to Merkuriev�s
asymptotic [14]. Such an approximation allows us to simplify the solution procedure [16–18] and simul-

taneously provide a correct asymptotic behaviour of the solution before the three-body break-up threshold.

Let us delineate Eqs. (3) and (4) in terms of the adopted notations

E

"
þ

r2
~qqk

2Mk
þ
r2

~rrj3

2lj
� Vj3

#
Wkð~rrj3;~qqkÞ ¼ ðVj3 þ VjkÞWjð~rrk3;~qqjÞ: ð7Þ

Here j 6¼ k ¼ 1; 2 and l�1
j ¼ 1þ m�1

j : We are using the Jacobi coordinates

~qqj ¼~rrj3 � bk~rrk3; ~rrj3 ¼
1

c
ðbk~qqk þ~qqjÞ and ~rrjk ¼

1

c
ðrj~qqj � rk~qqkÞ; ð8Þ

with the following mass-coefficients: bk ¼ mk=ð1þ mkÞ, rk ¼ 1� bk and c ¼ 1� bkbj. To solve (7) we ex-

pand the wave function components in terms of bound states in initial and final channels and project this
equation on these bound states. The same approach has been used in the framework of the cluster reduction

method in nuclear physics [19].

The expansion of the wave function is given by

Wkð~rrj3;~qqkÞ �
X
LMkl

X
n

1

qk
f ðkÞLM
nlk ðqkÞR

ðkÞ
nl ðrj3Þ Ykðq̂qkÞ

n
� Ylðr̂rj3Þ

o
LM

; ð9Þ

where a � ðnlkÞ are quantum numbers of a three-body state and L is the total angular momentum of the

three-body system obtained by coupling l and k, Ylms are the spherical harmonics, RðkÞ
nl ðrj3Þ is the radial part

of the hydrogen-like bound-state wave function, f ðkÞLM
nlk ðqkÞ are the unknown expansion coefficients. This
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prescription is similar to that adopted in the close-coupling approximation. After a proper angular mo-

mentum projection, the set of integral–differential equations for the unknown expansion functions f ðkÞ
nlk ðqkÞ

can be written as

kð1Þn

� �2�
þ o2

oq2
1

� kðkþ 1Þ
q2
1

�
f ð1Þ
a ðq1Þ ¼ g1

X
a0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2kþ 1Þð2k0 þ 1Þ

p
2Lþ 1

Z 1

0

dq2f
ð2Þ
a0 ðq2Þ

�
Z p

0

dx sinxRð1Þ
nl ðj~rr23jÞ

"
� 1

j~rr23j
þ Z1

j~rr12j

#
Rð2Þ
n0l0 ðj~rr13jÞq1q2

�
X
mm0

DL
mm0 ð0;x; 0ÞCLm

k0lmC
Lm0

k00l0m0Y �
lmðm1; pÞYl0m0 ðm2; pÞ; ð10Þ
kð2Þn

� �2"
þ o2

oq2
2

� k0ðk0 þ 1Þ
q2
2

#
f ð2Þ
a ðq2Þ ¼ g2

X
a0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2kþ 1Þð2k0 þ 1Þ

p
2Lþ 1

Z 1

0

dq1f
ð1Þ
a0 ðq1Þ

�
Z p

0

dx sinxRð2Þ
nl ðj~rr13jÞ

"
� Z1

j~rr13j
þ Z1

j~rr12j

#
Rð1Þ
n0l0 ðj~rr23jÞq2q1

�
X
mm0

DL
mm0 ð0;x; 0ÞCLm

k0lmC
Lm0

k00l0m0Y �
lmðm2; pÞYl0m0 ðm1; pÞ: ð11Þ

Here, gk ¼ 4pMk=c3, kðiÞn ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2MiðE � EðjÞ

n Þ
q

, with M�1
i ¼ m�1

i þ ð1þ mjÞ�1
, EðjÞ

n is the binding energy of ðj3Þ,
i 6¼ j ¼ 1; 2, c ¼ 1� mkmj=ðð1þ mkÞð1þ mjÞÞ, DL

mm0 ð0;x; 0Þ the Wigner function, CLm
k0lm the Clebsh–Gordon

coefficient, x is the angle between the Jacobi coordinates ~qqi and ~qqi0 , mi is the angle between~rri03 and ~qqi, mi0 is
the angle between ~rri3 and ~qqi0 . The following relations are useful for a numerical treatment

sin mi ¼ ðqi0=cri03Þ sinx and cos mi ¼ ð1=cri03Þðbiqi þ qi0 cosxÞ ði 6¼ i0 ¼ 1; 2Þ:
To find a unique solution to (10) and (11), appropriate boundary conditions, depending upon the specific

situation, need to be considered. First we impose

f ð1Þ
a ðq1Þ �

q1!0
f ð2Þ
a0 ðq2Þ �

q2!0
0: ð12Þ

(1) To calculate three-body bound states we impose vanishing boundary conditions:

f ð1Þ
a ðq1Þ �

q1!þ1
f ð2Þ
a0 ðq2Þ �

q2!þ1
0: ð13Þ

(2) For the three-body scattering problem, say ð13Þ þ 2 ! 2þ ð13Þ, we impose ‘‘standing wave’’
boundary condition:

f ð1Þ
1s ðq1Þ �

q1!þ1
sinðkð2Þ1 q1Þ þ tan d0 cosðkð2Þ1 q1Þ; ð14Þ

where d0 is the scattering phase shift and the cross-section is

rel ¼ ð
ffiffiffiffiffiffi
4p

p
=kð2Þ1 sin d0Þ2: ð15Þ

(3) Finally, for the three-body charge-transfer problems we apply the well known K-matrix formalism

[20]. This method has already been applied for solution of three-body problems in the framework of the

coordinate-space Faddeev–Merkuriev equations [6]. For the present scattering problem with 1+ (23) as the

initial state, in the asymptotic region, it takes two solutions to (10) and (11) satisfy the following boundary

conditions:
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f ð1Þ
1s ðq1Þ �

q1!þ1
sinðkð1Þ1 q1Þ þ K11 cosðkð1Þ1 q1Þ;

f ð2Þ
1s ðq2Þ �

q2!þ1

ffiffiffiffiffiffiffiffiffiffiffi
v1=v2

p
K12 cosðkð2Þ1 q2Þ;

8<
: ð16Þ

where Kij are the appropriate coefficients. For scattering with 2+ (13) as the initial state, we impose the

following conditions:

f ð1Þ
1s ðq1Þ �

q1!þ1

ffiffiffiffiffiffiffiffiffiffiffi
v2=v1

p
K21 cosðkð1Þ1 q1Þ;

f ð2Þ
1s ðq2Þ �

q2!þ1
sinðkð2Þ1 q2Þ þ K22 cosðkð2Þ1 q2Þ;

8<
: ð17Þ

where vi (i ¼ 1; 2) are velocities in channel i. With the following change of variables in (10) and (11)

f
ð1Þ
1s ðq1Þ ¼ f ð1Þ

1s ðq1Þ � sinðkð1Þ1 q1Þ;
f
ð2Þ
1s ðq2Þ ¼ f ð2Þ

1s ðq2Þ � sinðkð2Þ1 q2Þ;
ð18Þ

we obtain two sets of inhomogeneous equations which are solved numerically. The coefficients Kij are

obtained from the numerical solution of the Faddeev–Hahn-type equations. The cross-sections are given by

rij ¼
4p

kðiÞ21

dijD2 þ K2
ij

ðD� 1Þ2 þ ðK11 þ K22Þ2
; ð19Þ

where i; j ¼ 1; 2 refer to the two channels and D ¼ K11K22 � K12K21.
3. Numerical method

For numerical solution of the set of coupled integro-differential equations (10) and (11) we apply the

discretization method [21]. On the right-hand side of the equations the integrals over q1 and q2 are replaced

by sums using the trapezoidal rule and the second-order partial derivatives on the left-hand side are

discretized using a three-point rule [22]. By this means we get a set of linear equations for the unknown

coefficients f ðiÞ
a ðkÞ (k ¼ 1;Np):

kð1Þ2n

�
þ D2

ij �
kðkþ 1Þ

q2
1i

�
f ð1Þ
a ðiÞ �M1

c3
XNs

a0¼1

XNp

j¼1

wjS
ð12Þ
aa0 ðq1i; q2jÞf

ð2Þ
a0 ðjÞ ¼ 0; ð20Þ
�M2

c3
XNs

a¼1

XNp

j¼1

wjS
ð21Þ
a0a ðq2i; q1jÞf ð1Þ

a ðjÞ þ kð2Þ2n0

"
þ D2

ij �
k0ðk0 þ 1Þ

q2
2i

#
f ð2Þ
a0 ðiÞ ¼ B21

a0 ðiÞ: ð21Þ

Here, coefficients wj are weights of the integration points q1i and q2i (i ¼ 1;Np), Ns is the number of

quantum states which are taken into account in the expansion (9). This is a well known close-coupling

approximation method in atomic physics [20]. In this work we use up to 10 states, that is five atomic states

1s–2s–2p–3s–3p in each centrum. D2
ij is the three-point numerical approximation of the second-order dif-

ferential operator:

D2
ijfaðiÞ ¼

faði� 1Þdi�1;j � 2faðiÞdi;j þ faðiþ 1Þdiþ1;j

D
; ð22Þ

where D is a step of the grid D ¼ qiþ1 � qi. The vector B21
a0 ðiÞ is



236 R.A. Sultanov, D. Guster / Journal of Computational Physics 192 (2003) 231–243
Bð21Þ
a0 ðiÞ ¼ M2

c3
XNp

j¼1

wjS
ð21Þ
a01soði; jÞ sinðk1qjÞ; ð23Þ

and in symbolic-operator notations the set of linear equations (21) has the following form:

X2 � Ns

a0¼1

XNp

j¼1

Aaa0 ði; jÞ~ffa0 ðjÞ ¼~bbaðiÞ: ð24Þ

The discretized equations are subsequently solved by the Gauss elimination method [23]. As can be seen

from Eqs. (20) and (21) the matrix A has a block structure. There are four main blocks in the matrix: two of

them related to differential operators and other two to integral operators. Each of these blocks has sub-

blocks depending on the quantum numbers a ¼ nlk and a0 ¼ n0l0k0. The second-order differential operators
produce three-diagonal sub-matrices. In Fig. 1 the structure of the matrix A is presented.

There is no need to keep the whole matrix A in the computer�s RAM. The following optimization

strategy shows that one can reduce memory usage at least four times. Actually, the numerical equations (20)

and (21) can be written in the following way:
Fig. 1. Structure of the block-matrix A.
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D1f 1 �M1

c3
S12f 2 ¼ 0; ð25Þ
�M2

c3
S21f 1 þ D2f 2 ¼ b: ð26Þ

Here, D1, D2, S12 and S21 are submatrixes of A. From Eq. (25) one can determine that

f 1 ¼ ðD1Þ�1M1=c
3S12f 2; ð27Þ

where ðD1Þ�1
is reverse matrix of D1. Finally, we obtain a reduced set of linear equations which are used to

perform the calculations

D2

�
�M1M2

c6
S21ðD1Þ�1S12

�
f 2 ¼ b: ð28Þ

To solve the integral–differential equations, one has to calculate the angular integrals in Eqs. (10) and
(11) which are independent of the energy E. One needs to calculate them only once and store them on hard

disk for the later calculation of other observables, for instance, the cross-sections at different energies.

Subintegrals in Eqs. (10) and (11) have strong dependence on qi and qi0 . To calculate Sðii0Þ
aa0 ðqi; qi0 Þ at different

coordinates an adaptable algorithm has been used [23]. In this case using the relation

cosx ¼ x2 � b2
i q

2
i � q2

i0

2biqiqi0
; ð29Þ

the angle dependent part of the equations can be written now as the following integral:

Sðii0Þ
aa0 ðqi; qi0 Þ ¼

4p
bi

½ð2kþ 1Þð2k0 þ 1Þ�1=2

2Lþ 1

Z biqiþqi0

jbiqi�qi0 j
dxRðiÞ

nl ðxÞ �
�
� 1þ x

rii0 ðxÞ

�
Rði0Þ
n0l0 ðri3ðxÞÞ

�
X
mm0

DL
mm0 ð0;xðxÞ; 0ÞCLm

k0lmC
Lm0

k00l0m0YlmðmiðxÞ; pÞY �
l0m0 ðmi0 ðxÞ; pÞ: ð30Þ

Note that the expression (30) differs from zero only in a narrow strip when qi � qi0 , because for the
considered three-body systems the coefficient bi is approximately equal to one. This fact is demonstrated in

Figs. 2 and 3, where we present as examples selected angle integral surfaces (30): Sð12Þ
2s:2p0 ðq1; q2Þ and

Sð21Þ
2s0 :2sðq2; q1Þ for lþe�pþ three-body system. All angle integral surfaces have pretty different forms. In order

to obtain a converged solution we needed a large number of discretization points (up to 1000) adequately

distributed between 0 and 40–60 atomic/muonic units. More points are taken near the origin where the

interaction potentials are large; a smaller number of points are needed at large distances.
It is easy to estimate the total amount NQ of angle integrals Sðii0Þ

aa0 ðqi; qi0 Þ which are needed to fill out the

matrix A, Fig. 1. For example, in the case of Np ¼ 1000 discretization points and 10-state approximation

Ns ¼ 2� 5: NQ ¼ 5� Ns � Np � Np � 108. However in view of the fact that the value of Sðii0Þ
aa0 ðqi; qi0 Þ is mostly

concentrated in the narrow strip, when qi � qi0 one can reduce NQ by factor � 10�4. We shall discuss the

results and details of calculations in next section.

In this work we deal with various Coulomb three-body systems at different energies. For a specific

physical situation described by the set of second-order integral–differential equations (10) and (11) one has

to impose specific boundary conditions to the equations. For example, to calculate bound states of
a Coulomb three-body system we have to impose two boundary conditions (12) and (13). Taking into

account the structure of the second-order differential operator D2
ij (22) these conditions can be easily



Fig. 2. Sð12Þ
2s:2p0 ðq1;q2Þ function for lþe�pþ system.

Fig. 3. Sð21Þ
2s0 :2sðq2; q1Þ function for lþe�pþ system.
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incorporated into the matrix A. For example, from Fig. 1 one can see that for the first line of the matrix

i ¼ 1 and for line with i ¼ Np

f ð0Þ ¼ 0 and f ðNp þ 1Þ ¼ 0; ð31Þ

these values verify that the conditions (12) and (13) are satisfied automatically. To calculate binding en-

ergies EbðnÞ ðn ¼ 1; 2; . . .Þ of a three-body system we get~bbaðiÞ ¼ 0. The linear set (24) has a solution when

the determinant of the matrix A is equal to zero, that is
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det½AijðEbðnÞÞ� ¼ 0; ð32Þ

where EbðnÞ are unknown parameters. In the case of scattering (14) and rearrangement scattering (16) and

(17) problems we apply almost the same procedure and also have to use Eq. (18).

The computer code is constructed in such a way so that it can be applied to various three-body atomic
problems without major changes. For different quantum systems we need only to correctly input muonic/

atomic units, masses of particles, their charges and appropriate boundary conditions. Our computer code

consists of three main parts: (1) initialization of data and numerical grid; (2) calculation of the angular

integrals Saa0 ðq1; q2Þ (30) and saving them on the computer�s hard disk; (3) construction of the main matrix

A using the Saa0 ðq1i; q2jÞ, solution of the set of linear equations, production of the three-body wave function

and, finally, the calculation of physical observables, for the given example�s cross-sections. All these tasks

are implemented into the unique computer code.
4. Results

1. In this work we apply the Faddeev–Hahn integral–differential equations approach and the numerical

algorithm and computation procedure described in Section 3 to quantum three-body systems with pure

Coulomb interactions and arbitrary masses. At first we calculate ground-state energies of some atomic

systems. In Table 1 we present our results within the 6-state 2� (1s–2s–2p) and the 10-state 2� (1s–2s–2p–

3s–3p) approximations to the close-coupling expansion (9) together with the results of recent variational
calculations, which are considered to be the most accurate to date. We carried out calculations for a

negative ion of positronium Ps� and a positive ion of a hydrogen molecule Hþ
2 .

It has been demonstrated herein for Ps� and Hþ
2 systems that the Faddeev–Hahn method is able to

produce results within �11% in the 6-state model and �3.5% in the 10-state model calculations. Convergent

numbers are obtained in these cases with up to 900 points of integration which we distributed between 0

and 40a0, where a0 is the radius of the hydrogen atom.

2. Now we consider muonic systems, which are of interest in the muon catalyzed fusion cycle of ther-

monuclear reactions (cold fusion) [8]. First we deal with the spectrum level of muonic molecules. The
spectrum of muonic molecules dtl� and ddl� has also been calculated in the 10-state approximation which

takes into account the quantum states with n6 3 and n0 6 3 as well as orbital quantum numbers over the
~rrj3 : l6 1, l0 6 1 and~qqk : k6 1, k0 6 1. Obtained results are listed in Table 2. The following values of masses

(in the units of the electron mass me) have been used in the calculations: muon mass is ml ¼ 206:769;
deuteron mass md ¼ 3670:481 and triton mass mt ¼ 5496:918.

In order to obtain converged results we needed a large number of integration points (up to 900) ade-

quately distributed between 0 and 50al, where al is the radius of the muonic hydrogen. More points are

taken near the origin where the interaction potentials are large. A small number of points are needed at
large distances. For example, near the origin we took up to 40 equally spaced points per unit length interval

al, in the intermediate region ðq ¼ 10–20alÞ we took up to 15 equally spaced points per unit length interval

al. In Table 2 we also present the results of variational calculations [26] which are considered to be the most
Table 1

Results for ground-state energies of Ps� and Hþ
2 in atomic units

Atomic systems Faddeev–Hahn equations Other results

1s–2s–2p model 1s–2s–2p–3s–3p model

Ps� )0.30 )0.27 )0.2620051 [24]

Hþ
2 )0.66 )0.62 )0.597139 [25]



Table 2

Spectrum level of muonic molecules, eV

Muonic molecules Faddeev–Hahn equations Variational results [26]

1s–2s–2p model [15] 1s–2s–2p–3s–3p model

dtl )323.1 )319.4 )319.1397
dtl� )32.9 )33.7 )34.8345
ddl )326.4 )325.2 )325.0735
ddl� )33.1 )35.0 )35.8444
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accurate in the literature. The values of binding energies are counted out from the ground level of a

mesoatom having the heaviest nucleus given in eV. The excited states are denoted by the asterisk. We obtain

very good agreement with the variational calculations. Here, we would like to point out that all considered
problems above, namely Ps�, Hþ

2 , dtl� and ddl�, represent useful examples of three-body Coulomb

systems for testing and comparison of different methods. For these systems we have also calculated their

wave functions.

The advantage of our method is that it is general in nature and is applicable to a variety of systems. To

achieve this flexibility we sacrifice a degree of precision. We can calculate beyond 3–4 digits, but in doing so

do not get stable results. Our current level of stability provides results that are within �1.5–3.5% of the

known quantities generated by their respective specific algorithm.

3. To provide an example of three-body elastic scattering problem we calculated the results of the fol-
lowing process:

ðtlÞ1s þ d ! dþ ðtlÞ1s ð33Þ

below the ðtlÞn¼2 threshold. This collision has generated great interest in the context of resonance for-

mation of muonic molecules dtl� in the muon catalyzed fusion cycle. The structure of our computer code

allows us to reuse the angular integrals (30) calculated earlier when we determined the spectrum level of the

dtl� system. However, for the scattering problem (for the open channel) we need to impose different

boundary equations, namely (12) and (14). In Table 3 we include our results from the 6-state approximation
and also the results of [6], which were performed using the three-dimensional Faddeev–Merkuriev coor-

dinate-space approach and results of multilevel adiabatic calculations [9]. As can be seen, our results are in

reasonable agreement with results of works [6,9]. We have found that for this process the low energy

scattering phase shift d0 (see expressions (14) and (15)) was rather sensitive to different numerical para-

meters of our calculations such as the number of integration points and the maximum value of the inte-
Table 3

S-wave elastic cross-sections rel (10
�19 cm2) for ðtlÞ1s þ d scattering

Energy E (eV) Faddeev–Hahn equations

(1s–2s–2p model)

3D-Faddeev–Merkuriev

equations [6]

Adiabatical approach [9]

40.0 0.4 0.371 –

30.0 0.7 0.636 –

20.0 1.1 1.072 –

10.0 2.0 1.763 1.9

5.0 2.5 – 2.4

3.0 2.7 – 2.5

1.0 2.3 2.158 2.4

0.5 2.2 1.975 2.2

0.3 2.1 – 2.1

0.1 1.7 1.628 1.7
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gration qmax. We had to integrate up to qmax � 100 atomic (muonic) units for this system and got stable

results only in two digits. The same approximation in the standard close-coupling treatment (static ex-

change approximation) is well known to be not satisfactory.

4. In this work we carry out analysis of a three-body charge-exchange reaction, namely e� transfer, for a

muonium Mu formation in collision of positive muons lþ with hydrogen atoms H at low energies

lþ þH1s ! Mu1s þ pþ; ð34Þ

where pþ is a proton. Here, we would like to point out that the muonium atom Mu is an ultralight isotope

of hydrogen: mðHÞ=mðMuÞ � 9. Investigation of these atoms may provide an exceptionally sensitive probe

of dynamical mass effects in physical chemistry and chemical physics. Current areas of interest are in lþ

charge exchange and Mu-formation (34) as well as chemical reaction in collisions of Mu with H2 molecules

[27,28]. The most interesting energies for laboratory investigations are low-energy collisions.
Our cross-sections rex for Mu-formation (34) are presented in Fig. 4 together with the theoretical results

of work [11]. We employ atomic units: distances are measured in units of a0. In solving this problem

distances up to 60a0 were considered and 900–1000 points were used in the discretization. The following

mass values are used in the unit of electron mass: mp ¼ 1836:152 and mlþ ¼ 206:769.
Because we are mainly concerned with the very low-energy collisions Ecol � 10�2–10�4 eV we employed

only the lowest partial wave L ¼ 0. The value of Ecol is counted out from the ground level of the hydrogen

atom H1s and the momenta kð1Þ and kð2Þ in Eqs. (10) and (11) are

kð2Þ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2mpml

mp þ ml
Ecol

s
; kð1Þ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðkð2ÞÞ2 þ mp � ml

mp þ ml

r
: ð35Þ

It is shown that our 6-state model calculations for rexðkð2ÞÞ, where kð2Þ � 3:7�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ecol ðeVÞ

p
, generally re-

produce for low energies the behaviour of the same cross-section from work [11]. We found that the
Fig. 4. Cross-section of the reaction lþ þH1s ! Mu1s þ pþ.
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contribution of p-waves in sub-systems is reasonable and ranges up to 20–40%. It would be useful for future

work to extend the basis in the expansion (9) and obtain converged results as was done in our previous

calculations for binding energies of atomic and muonic three-body systems (presented in Tables 1 and 2 of

this work).
5. Conclusion

The study of three-body Coulomb problems has been the subject of this work. We have investigated

different atomic and muonic three-body systems in the framework of a detailed few-body approach. It was

shown that the method of using Faddeev–Hahn equations (3) and (4) and close-coupling approximation is

effective and able to produce with 10- or even only 6-states in the close-coupling expansion results that are

accurate within �11% in the 1s–2s–2p model and �3.5% in the 1s–2s–2p–3s–3p model, respectively not just

for binding energies of atomic three-body systems (Table 1), but for muonic molecules (Table 2), three-

body elastic scattering (Table 3) and charge-transfer reactions (Fig. 4) as well. We constructed an effective

algorithm, which allows us to considerably conserve computer resources. The whole procedure leads to a
great reduction of the usual technical effort and is definitely worth being considered. Additionally, we are

committed to further increasing the efficiency of this computer code by employing a variety of parallel

processing techniques in both loosely coupled and tightly coupled environments [29,30].
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